
J .  Fluid Mech. (1980), vol. 96, part 3, p p  493-613 

Printed in Great Britain 
493 

On diffusive instabilities of a rapidly rotating electrically 
conducting layer of compressible fluid of varying depth 

By M. P. GIBBONS 
Department of Applied Mathematics, University of St Andrews, Fife, Scotland 

(Received 2 February 1979) 

Compressibility is added to Busse’s (1976) study of convection in a rotating, electrically 
conducting layer of fluid, of varying depth, which is permeated by an azimuthal 
magnetic field that is orthogonal to both the rotation vector and the gravitational 
acceleration g. On the basis of a linear theory, we investigate the kinds of infinitesimal 
wave motion which the fluid can support when the dominant balance of forces is 
between pressure gradient and Coriolis force, so that the Proudman-Taylor theorem 
holds. Unlike Busse, however, we assume that the fluid is statically stable in the sense 
that the temperature gradient is sub-adiabatic. 

In  the absence of diffusion, these waves are dynamically neutral and take the form of 
Rossby waves modified by compressibility and magnetic field. The waves are examined 
in two limits, the adiabatic and the isothermal, and we define two distinct frequencies 
a t  which a pure Rossby wave can oscillate. When diffusion is restored, the disparity 
between these frequencies makes the fluid susceptible to overstability. We prove that 
all such amplifying waves must propagate eastward, i.e. in the direction of g A GI, 
irrespective of the sign of the depth gradient or the magnitudes of the diffusivities. 
The theorem does not apply if the fluid is incompressible or convectively unstable at  
the outset, and therefore does not contradict Busse’s result that the direction of 
azimuthal propagation can be altered by the diffusivities. Nevertheless, we suggest 
reasons why Busse’s method of regarding the imaginary part of the marginal stability 
equation as a dispersion relation is not in general a reliable one. 

We examine the instabilities by subjecting the neutral waves to a weakly diffusive 
perturbation. We discover, in particular, a new kind of magnetic instability which is 
crucially dependent upon both compressibility and the depth gradient. In  agreement 
with the general result described above, the instability takes the form of a slow, 
eastward propagating, amplifying wave. 

The principal source for all instabilities is elastic energy, which cannot be tapped in 
a Boussinesq fluid, since the work done by compression is neglected under that 
approximation. 

1. Introduction 
Instability by ‘magnetic buoyancy’ (Parker 1955, 1977) is perhaps the most widely 

known example of an instability for which a magnetic field is crucial but the available 
potential energy is primarily not magnetic. In  this particular case the non-magnetic 
energy is gravitational, but the elastic energy of a compressible fluid can also be 
released by a magnetic field (Acheson & Gibbons 1978). In  a rotating fluid, such 
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magnetic instabilities have appeared most readily in the form of amplifying waves 
which, relative to the rotating fluid, propagate with a frequency that is very much 
smaller than a typical Alfvkn frequency (Roberts & Stewartson 1977; Acheson 1978a; 
Acheson & Gibbons 1978; Moffatt 1978). These ‘slow waves’ are typical of circum- 
stances in which the momentum equation exhibits a ‘magnetostrophic ’ balance 
between Lorentz and Coriolis forces and the dynamical (including gravitational effects) 
pressure gradient (see, for example, Acheson & Hide 1973). The instabilities are then 
intrinsically three-dimensional. 

The last observation has prompted the present study: we ask whether such 
instabilities can take place in an almost two-dimensional manner. We therefore 
restrict our attention to a rapidly rotating [in the sense of equation (1.2)] fluid for 
which the dominant term in the momentum equation exhibits a balance between the 
Coriolis force and the (actual) pressure gradient, so that the effect of gravity and of the 
Lorentz force is in some sense small. Then (see, for example, Acheson 1978b) steady 
fluid motions are two-dimensional in filaments parallel to the rotation vector 9, 
a result which is known as the Proudman-Taylor theorem. We shall call such a balance 
of forces geostrophic, even though we have solar applications of our theory primarily 
in mind. In  this paper we shall consider ‘ quasi-geostrophic ’ magnetohydrodynamic 
wave motions which represent a small departure from a geostrophic flow. 

Magnetic instabilities are important for theories of the solar convection zone and, 
with this in mind, it would be most appropriate to consider a spherical shell of rotating 
compressible fluid. However, this geometry is difficult to treat analytically and there 
is justification for replacing it by a simpler (Cartesian) geometry. When geostrophic 
conditions prevail, the principal effect of the curvature in the boundaries of a rotating 
shell of fluid contained between two concentric spheres is that it alters the length, and 
consequently the vorticity, of a filament of fluid which is moving towards or away from 
the axis of rotation. This phenomenon can be modelled qualitatively in a Cartesian 
geometry by considering a rotating layer offluid of average depth D which is 
bounded by a flat top, that is perpendicular to 9, and a gently sloping bottom. We 
shall present such a treatment in this paper; the configuration is described in detail in 
8 2 [see also Pedlosky (1971), Hide (1977) and Acheson (1978b)l. The magnetic field is 
parallel with the depth contours (and perpendicular to both S2 and gravity g) and 
corresponds to a toroidal field in the shell. We thus expect that, when the depth 
decreases (increases) in the direction of g, the fluid will exhibit behaviour which is 
typical of the mid-latitudes (equatorial latitudes), i.e. that region on the poleward 
(equatorward) side of the cylindrical surface touching the inner spherical boundary 
a t  the equator, of a thin shell of rotating, compressible, self-gravitating fluid. 

We confine our attention to a parameter regime 

N 2  Q S12, V 2  Q a2, 191 ;t alSZZ(, (1.1) 

V 2  < IS2Zj2D2, (1.2) 

which is appropriate to the (low entropy) convection zone of the sun. Here a denotes 
the isothermal sound speed, V the Alfvh speed and N ,  the Brunt-Vaisala frequency, 
is the frequency a t  which a parcel of fluid would oscillate if displaced adiabatically in 
the absence of rotation and magnetic field. We shall assume throughout that the fluid 
is statically stable, i.e. N 2  > 0, since we wish to describe a new instability mechanism 
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that is distinct from simple thermal convection; but we note in passing that the 
eastward propagation theorem of 0 4 below remains true if? 

N 2  < 0 and INI2 5 O( ?“a/D2). (1.3) 
Despite the restrictions contained in ( l . l ) ,  the mathematical formulation of $ 2 

represents a substantial generalization of Bum’s (1976) study of linearized wave 
motions in a Boussinesq fluid; weak compressibility is added to his model. Apart from 
the fact that Busse’s fluid is convectively unstable at  the outset (equivalent to N 2  c 0 ) ,  
the main difference between the two models concerns the viscous approximation used. 
We deal with this matter in the appendix. We follow Busse in considering only the 
component of gravity which is parallel to the temperature gradient vector. 

The plan of the paper is as follows. In $ 2 we describe the model used and derive the 
basic equations for the wave motions considered. In $ 3  we present the non-diffusive 
theory and show that the waves are neutral. In 0 4 we prove that any instabilities must 
propagate, and propagateeastward; we also discuss Busse’s (1976) method of regarding 
the imaginary part of the marginal stability equation as a dispersion relation. In Q 5 
we examine the effect of a weakly diffusive perturbation to the adiabatic solution of 
$ 3  (a )  and show that thermal diffusion can have a destabilizing effect. In $ 6  we 
summarize and discuss the main results of the paper. 

2. Mathematical formulation 
Let us consider, then, an electrically conducting compressible fluid, of density p+, 

which is unbounded in the x direction; the fluid is bounded by plane walls at y = & 40 
and z = D, and by a gently sloping lower boundary z = zl(y), where z,(O) = 0. (We 
append the boundary conditions which walls a t  y = & 40 require for completeness 
only; since we shall make a local approximation (see, for example, Goldreich & 
Schubert 1967; Fricke 1969) they are not strictly necessary.) The fluid rotates with 
constant angular velocity $2 = Re,, where e,, ev and e, are unit vectors in the x, y and z 
directions, respectively, of the rotating Cartesian frame of reference; we shall assume 
throughout that R > 0. In this frame, motion per unit volume of the fluid is described 
by the inviscid (see the appendix) momentum equation, conservation of mass or 
continuity equation, Gauss’s law and the magnetic induction equation, equation of 
state (perfect gas law) and the equation of heat transfer (we assume there are no 
internal sources and ignore viscous dissipation) : 

t The value of NB corresponding to the solar convection zone is, in fact, marginally negative. 
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These are the usual magnetohydrodynamic equations and are amply discussed, for 
example, by Roberts (1967); t ,  u = (u, v,  w), p+ ,  B+, T+, e (  = ( y -  1)-1RT+) and 
g = g ( y )  ev ( g  > 0) denote, respectively, time, fluid velocity, total (fluid + magnetic) 
pressure, magnetic flux density, temperature, internal energy density and effective 
(including centrifugal acceleration) gravity; 7, K ,  p, y and R, all of which are assumed 
constant throughout the paper, denote magnetic (ohmic) diffusivity, thermal 
diffusivity, magnetic permeability, ratio of specific heats (1 < y < 2) and gas constant; 

eq = p-'v(V B+)l (2.6) 

represents the rate at  which magnetic energy is dissipated by ohmic heating. 
Equations (1.1)-( 1.5) admit the steady solution 

(2.10) 

However, suppose L and A are the length scales associated, respectively, with the basic 
state (2.7) and its subsequent perturbation; the diffusion times L 2 / ~ ,  L2/7 over which 
the steady state will evolve are very greatly in excess of the diffusion times A 2 / K ,  A2/q 
associated with the disturbances considered in this paper because we make the 'local' 
or ' narrow gap ' approximation 

Hence, (2.10) may be ignored in practice; we are than free to prescribe B ( y )  and T,(y) 
at will. (In fact, the magnitude of the steady state contribution to the energy equation, 
when suitably non-dimensionalized, is quite clearly smaller than even the last term - 
the least important term -of equation (2.39) below.) 

When a geostrophic balance obtains, viscosity will be important in Ekman boundary 
layers, of thickness EaD, at the top and bottom of the fluid, where v is the kinematio 
viscosity, the Ekman number is defined by 

A 4 L. (2.11) 

E = V / Q D  (2.12) 

and Z 4 1.  The effect of these boundary layers (Greenspan 1968) is to create, at the 
upper and lower boundaries, a small suction velocity 

~ ( ~ ) * n . v A u , ,  2 S2.n (2.13) 

where u, is the velocity parallel to the boundary and n is the unit normal to it. If 
6 = dz,/dy is the slope of the bottom boundary and 8 4 1, 

n = V(z-q(y)) = ( i + 8 2 ) 3 ( 0 ,  - 8 , i )  - (0, -8 , i ) ;  (2.14) 
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Jso, since 19 4 1, COB 8 == 1 and we can replace u, by (u, v, 0). We therefore write the 
Ekman suction velocity as 

we = * ( v / Q ) i  (avlaz- a u p y ) ,  (2.15) 

which is of order El compared to the flow in the interior of the fluid. 
Accordingly, we now write 

(2.16) 

where b = (b,, b,, bz), and perturb the steady solution (2.7) subject to the boundary 
conditions 

B+ = Be, + b, u = (u, v, T +  w) = TB+T,J 

P' = P B + P ,  P' = P B + r ) ,  

w =?)-+we at z = z t ( y ) ,  
dY 

w = - w B  at z = D ,  

v = O,T = 0 at y = + ) D .  

(2.17) 

(2.18) 

Aseuming that u, P I P B ,  p / p B ,  etc. are small, substituting (2.16) into equations (2.1)- 
(2.5) and neglecting products of small quantities, we obtain the following set of 
linearized equations: 

(2.19) 

(2.20) 

V.b = 0, (2.21) 

(2.22) 

(2.23) 

and 

where a prime denotes differentiation with respect to y .  We define 

V ( Y )  B/ (PPB)f  

aO(y) (RTB)*, 

(2.26) 

(2.26) 

(2.27) 

These are, respectively, the Alfv6n speed, isothermal sound speed and Brunt-Viisiilii 
frequency. We assume [cf. equation ( 1.  l)] that 

IV12 4 Ia0l2- (2.28) 
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Then, with a very small error (of fourth order in the expansion parameter; see below), 
we can say that p ,  in (2.8) and (2.9) is simply the fluid pressure in the basic state and 
write (2.27) in its more familiar form 

where 

(2.29) 

(2.30) 

is the adiabatic temperature gradient. We shall assume throughout that the tem- 
perature gradient is sub-adiabatic (N real) and close to the adiabatic one, because we 
must satisfy (l.l), of which we remind ourselves here: 

N 2  SP, g 2 u,R. (2.31) 

We now non-dimensionalize t ,  ( x , y , z ) ,  u, b, p ,  p, T, 7, K and z, by, respectively, 
7, D ,  U ,  IBI7UD-l, lpBl URD, lpBl U R D ~ U , ~ - ~ ,  lTBl URDR-l, D+l, 0%-1 and 
h (see figure 1); also, the basic state functions B, pB,  a,, etc. vary by a factor of order 
unity over a length scale L and 

Thus, in non-dimensional form, equations (2.19)-( 2.24) become 

1 aii - 1 Q  I I @ .  s - --- 2Ce, + 2ue, = 
RT a% PB laO12 zPeV 

1 R2D2@ D p&- - - -- +- .r w+v.ii = 0, 

V.b = 0,  

-+: + - . = v 

a - -  - a _ -  - 

R7' laOl2 &? L PB 

- -  

- a% aw D B'- 
ag a2 L B  

(by, b,) = B - (V, 4 + 7V2(i;,, Q, ax 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 
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while the boundary condition (2.17) becomes 

E) at z = - % ,  

(2.40) 

- ") 
- h - d q  

D dg 
w = -v-++E+ --- 

at i = 1. 
- w = -tE*(Z-g) aij a;ii 

Here, an overbar denotes a dimensionless quantity; ?j = ~ T D - ~ ,  K = KTD-~. In  view of 
(2.11) with A - D, it is important to note that the functions B, PB, FB, 0 and 1 which 
appear in equations (2.33)-(2.39) depend on the 'slow' variable (see (2.41) below) 
DL-lij and a prime denotes differentiation with respect to that argument. We now 
choose s = ~ D - I ,  ros = DL-1, E O ~  = E+, (2.41) 

( Q T ) - ~  = GO&, 1.1 Q-lD-1 = Hod', Igl DIU,J-~ = KO&, (2.42) 

RD laol-l = O(S), IN1 Q-l = 0(6), (2.43) 

where 6 4 1 and PO, EO, GO, HO and KO are 0(1)  constants. Thus, in the momentum 
equation, geostrophy obtains at leading order while Lorentz forces contribute at the 
next order; and, with A - D, (2.11), (2.28) and (2.31) are well satisfied. In  particular, 
I VI2 laol-2 = O ( P ) .  The above choice of parameters filters fast acoustic modes (sound 
waves) out of the wave spectrum, since the temporal term in the continuity equation is 
too small to play a part in the subsequent analysis. The choice does not, however, 
filter out the slow acoustic modes (or internal gravity waves; see Holton 1972). 

We look for solutions of (2.33)-(2.40) in the form 

ii = iio + Kl1 + O(S2) (2.44) 

and so on. Dropping, for convenience, overbars on all except the basic state variables, 
we obtain from (2.33), (2.35) and (2.40) the zeroth order (in 6) equations 

V.bo = 0 

and the zeroth-order boundary condition 

wo = 0 a t  z = 0 , l .  

Cross differentiating (2.45) gives 

(2.45a, b) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

The most illuminating form of (2.34) is actually one in which no assumption has 
yet been made concerning the rate a t  which p B  varies with y: 
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A t  zeroth order in 6 this gives 

on using (2.49). At first order in 6, (2.50) gives 

(2.51) 

(2.52) 

while (2.33) leads to 

If we now make the local approximation that p B  varies slowly and use (2.48), we obtain 
wo = 0 and, from (2.52), 

(2.54) 

Clearly p,, uo, vo and wo are all independent of z ;  the fluid motions are two-dimensional 
to leading order. We assume that b,, po and To are also independent of z. 

An alternative derivation of (2.54) has been given by Gibbons (1977). It is an 
important point that the fluid is non-divergent (at this order) but not incompressible : 
according to (2.57) below, the densit.y is allowed to respond to changes in pressure. The 
equation of state for a Boussinesq fluid allows the density to respond only to changes 
in temperature. Thus the work done by compression is an energy source for instability 
that is not incorporated into Busse’s (1976) model (see 5 5 below). 

Substituting the expressions (2.53) for u1 and v1 into (2.54) gives a right-hand side 
which is independent of z ;  using (2.47) to eliminate b,, integrating (2.54) between 
z = 0 and z = 1 and applying the first-order boundary condition 

gives, restoring overbars: 

The dimensional form of this equation is 
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where V i  = a2/ax2 + a2/ay2. Henceforward, it is most convenient to work with dimen- 
sional quantities; in these terms, the zeroth-order versions of (2.37)-(2.39) give 
(recalling that zeroth-order functions are independent of z )  : 

and 

(2.56) 

(2.57) 

(2.58) 

Fquations (2.55)-(2.58), together with the dimensional forms of (2 .45~)  and (2.49), 
are six equations for the six unknowns uo, vo, by., po, po and To. Since the steady-state 
functions which appear in these equations hardly vary across the fluid (because 
D < L) ,  we can assume that they are constant; solutions satisfying the boundary 
condition (2.18) at zeroth order are then 

Vo, To, Po, bYo’ Po Re {exp [i(kx - WI sin M Y  + P ) l ) ,  (2.59) 

uoccRe{exp[i(kx-ot)] cos[m(y+iD)]}, (2.60) 

where Re denotes real part, provided only that m is a multiple of nD-l and the following 
consistency condition is satisfied: 

(2.61) 
yN2k2 V2k2s2 2Rkdz -2Rkg w + i m 2  

+---L4S2(W+2RiEt).=--- 
Y W + i K s 2  W+i?,W2 D dy at ’ Y W  + iKS2’  

where s2 = k2+m2. (2.62) 

Thenovel termin (2.61) istheone on theright-hand sidewhichisdue to compressibility. 
If this term is removed, (2.61) reduces to Busse’s (1976) equation (12) when we let 
y --f 1 and alter details (change w to - w ,  s2 to his a2, etc.); in place of our N 2 ,  Busse’s 
model has a negative buoyancy parameter which drives convection by virtue of an 
adverse (equivalent to superadiabatic in our terms) temperature gradient. Consistency 
condition (2.61) forms a dispersion relation for waves in the fluid and will be used 
hereafter to determine its stability. 

3. Non-diffusive modes 
We shall discuss non-diffusive modes in two, quite different, limits; first of all, we 

recall a theorem due to Ertel which (Greenspan 1968), although it does not apply to an 
electrically conducting fluid, will be extremely useful in the discussion that follows. 
The theorem says that, in the absence of viscosity, the potential vorticity 

(J + 2SZ). VA 
@ =  

P+ 

of a fluid rotating with angular velocity SZ satisfies 
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where J = V A u is the vorticity relative to the rotating frame and A is any scalar 
quantity conserved by individual fluid elements throughout their motion. For the 
geostrophic flows considered here, A = x-l(z-zl) is such a quantity, where x is the 
length of a filament of fluid (Pedlosky 1971); and J has only one component, parallel 
to 51. Also, if the fluid is either homogeneous (p+ constant), isothermal (p+o tp+)  or 
isentropic (p+ ot p+Y), the only situations to be considered in 4 3 (a)  and $ 3  (b), then the 
right-hand side of (3.2) vanishes. Thus the potential vorticity is conserved: 

( J +  2R)/px = constant. (3.3) 

(a) E = r ]  = K = 0:  adiabatic modes 

When E = r] = K = 0, the fluid exchanges no heat with its surroundings and (2.61) 
reduces to that which we would have obtained by dispensing with the energy equation 
and using the isentropic law p oc p y  as the equation of state: 

W' + Be w - V'k2 - Nak2+ = 0, (3.4) 

where (3.5) 

will be called the adiabatic Rossby frequency and a, = yJa, is the adiabatic sound 
speed. (A knowledge of Rossby waves in an incompressible fluid is assumed here but 
may be gleaned from Holton 1972.) If we replace P* by the incompressible Rossby 
frequency 

the dispersion relation thus obtained, 

W' +PIn, w - V'k2 - N2k2s-2 = 0, (3.7) 

agrees with one previously obtained (Gibbons 1975) for a Boussinesq fluid when N is 
replaced by the incompressible Brunt-Vaisiila frequency {gpB1p&}J; if also N = 0, it 
agrees with that obtained by Hide (1966). Other limits are Alfv6n waves (R = N = 0) 
and internal gravity waves (R = V = 0). 

When V = N = 0, the pure Rossby wave 

0 Pinc 2R dz, 
Ic= --- k s2D 

propagates so that the deep fluid is on the left, in the positive or negative x direction 
according as dz,/dy < 0 or dz,/dy > 0. As Acheson (19783) has stressed recently, there 
is no concept of eastward or westward propagation here: the wave is totally insensitive 
to where in the x, y plane the rotation axis is located. The concept reappears as soon 
as we introduce compressibility, however: we associate eastward propagation with 
the positive x direction, that of gr\ 51. Suppose now that dz,/dy > 0. Then the 
mechanism by which an incompressible (pure, i.e. not modified by magnetic and 
stratification effects) Rossby wave propagates westward can be understood in terms of 
Acheson & Hide's (1973) argument, for a homogeneous fluid, involving diagrams of 
the instantaneous velocity profile. This argument, of which a detailed presentation 
would distract us unnecessarily here, ie essentially based on the observation that (when 
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d%/dy > 0) an outward moving filament of fluid (v < 0) increases in length and gains 
vorticity, while an inward moving filament decreases in length and loses vorticity, 
as can be seen by putting p = constant in (3.3). When the fluidis compressible, however, 
the expansion (compression) of a filament of fluid as it moves outward (inward) causes 
a decrease (increase) in its density p which, by virtue of (3.3), is responsible for a 
decrease (increase) in vorticity that counteracts the increase (decrease) due to topo- 
gaphic effects and, by simply reversing Acheson & Hide's argument, gives the Rossby 
wave a propensity for eastward propagation. Putting V = N = 0 in (3.4), we can 
quantify this balance between opposed vortiginous effects by saying that the 
direction of propagation of the pure Rossby wave depends upon the sign of 

(3.9) 

When dz,/dy < 0, of course, the topographic and thermodynamic vorticity effects 
reinforce, rather than oppose, each other and the pure Rossby wave always propagates 
eastwards. 

Let us now define 

J ,  = /?A2( V2k2+ N2k2s-2). 

The solutions of (3.4) are thus given by 

(3.10) 

(3.11) 

so that the roots w are always real and are such that the waves will always propagate 
in opposite directions. (The fact that the waves are dynamically neutral extends to the 
case of a destabilizing entropy gradient N2 < 0 if ( 1.3) is satisfied and the wavenumbers 
k, m are of order D-l.) Henceforward, the solution (3.11) for which the positive square- 
root sign is taken will be known as thefast wave, while that for which the negative sign 
is taken will be known as the slow wave. We choose this terminology because the 
frequencies of the wave pair are widely disparate when (cf. Hide 1966) 

The solutions of (3.11) are then given approximately by 

(3.12) 

(3.13) 

and 1w-l I@+/. The first of (3.13) corresponds to an almost pure Rossby wave, for 
which we expect magnetic effects to be unimportant; the second is a slow magneto- 
hydrodynamic wave of the kind that has been important in studies of magnetic 
buoyancy. 

(b) E = 7 = 0, K = co: isothermal modes 

When K = co, the fluid exchanges heat isothermally with its surroundings and (2.59) 
reduces to that which we would have obtained by dispensing with the energy equation 
and using the isothermal law I, cc p as the equation of state: 

W ' + / ? ~ W -  V2k2 = 0, (3.14) 

where (3.15) 



604 M .  P. Gibbons 

will be called the isothermal Rossby frequency. Comparing (3.14) with (3.4) we pee 
that letting K -+ 00 has the same effect as letting N -+ 0:  it  completely annihilates 
adiabatic buoyancy. Once again, the roots 

w =  -?WoB,(1+(1+4J,)*} (3.16) 

of (3.14) correspond to a pair of dynamically neutral waves which propagate in opposih 
directions; and the precise way in which the direction of propagation of the pure 
Rossby wave (V = 0 )  depends upon the sign of 

(3.17) 

can be understood by analogy with the adiabatic case. Here, J ,  E Pt2Vzk2. In the 
rapid rotation limit lJol 4 1 the waves are given approximately by 

w+ -A, A?,. (3.18) 

(c )  Vorticity equation for pure Rossby modes 

When there is no magnetic field and no entropy gradient, equation (2.55) can be 
reduced to the form 

(3.19) 

where a is the appropriate sound speed, for both (adiabatic and isothermal) 'pure 
Roseby waves. This equation enables us to see directly how the net change in vorticity 
depend8 upon the sign of p ;  for example, if p > 0, vorticity increases for an outward 
(v, < 0) moving filament. Equation (3.19) can also be obtained (see Gibbons 1977) by 
linearizing (3.3) subject to the appropriate relation between p and p. 

In  85 ,  we will solve (2.61) by subjecting (3.4) to a weakly diffusive perturbation 
euch that 

(3.20) 

We will therefore asaume that a typical diffusion time, associated with any of the three 
diffusions, is very much longer than a period of oscillation. 

4, Propagation results: marginal stability 
Before proceeding to the weakly diffusive analyses mentioned at the end of the last 

section, we derive a result which is independent of the strengths of the diffusions, 
namely that all instabilities of the fluid must take the form of eastward propagating, 
amplifying waves. 

Let us define the real and imaginary parts of w by 

w = WRe+iWIm 

and the reduced (since y > 1) thermal diffusivity K' by 
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wIm > 0 comeponds to instability. The real and imaginary parts of (2.61) are given by 

and 
V2k2dWRe(K' - 7) 2Rk d? 

(&e+(Ym+7182)2 I )  dv 
--- (wIm + ~ ' 8 ~ )  - 8 ' [ 2 ~ I ,  + 2RE4 + K'ti2] wRe 

Multiplying (4.3) by %m + ~ ' 8 ~ ,  multiplying (4.4) by o, and subtracting, we therefore 
obtain 

Suppose that wRe = 0; then the right-hand side of (4.5) vanishes and the equation which 
remains can only be satisfied i f w I m  < 0, corresponding to decay. Thus m y  instability 
must propagate; there is no stationary instability, a result which we could also have 
derived directly from (4.3). Suppose now that wIm > 0; then the left-hand side of (4.5) 
is positive. Hence, since y > 1, wRe/k must be greater than zero, so that the diiection 
of propagation is eastward. Even if N2 is negative, this result clearly remains true as 
long as IN12 < V2s2; with lkl N D-', lml - B-l, this condition is equivalent to (1.3). 

The propensity for eastward propagation is so strong that it is quite independent of 
both the gradient of depth dz,/dy and the relative magnitudes of the diffusivities 
involved. It is clearly due to compressibility: the right-hand side of (4.5) would vanish 
under the Boussinesq approximation. Indeed, there can be no instability at all without 
compressibility because the vanishing of the right-hand side of (4.5) requirea wIm to  
be negative. 

The method we have used to obtain information about the direction of propagation 
is thoroughly dependable; but we now proceed to explain why the method used by 
Busse (1976) must be regarded with caution. At marginal stability, wIm = 0; writing 
w = wRe, (4.3) and (4.4) become 

w2 + p* w - N2k2r2 - ~ Q E ~ K ' s ~  - V2k2(w' + q2s4)-l (w2 + T K ' ~ )  = 0 (4.6) 

and 

where we define 

(4.7) 

Since w can in theory be eliminated from equations (4.6) and (4.7), which should be 
regarded as a dispersion relation? Suppose, following Busse (1976), we take the 
imaginary part of the marginal stability equation, i.e. (4.7), which is identical in form 
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to Busse’s equation (13a). Again following Busse, we observe that (4.7) reduces to a 
quadratic in w in the two partially overlapping limits 

IW+P)I 4 IP~I, 101 9 17521; 

solving (4.7) in the first limit gives 

and when 

one of the roots is approximately 

V W (  1 - q )  

P O  

(4.9) 

(4.10) 

(4.11) 

From (4.11), we see that (4.10) is equivalent to 1 0 1  9 l ~ , ~ ~ 1  in this case. 
It now appears that the direction of propagation of a slow wave in the x direction 

depends on whether q >< 1, contradicting the general result obtained earlier. The flaw 
in the reagoning of the last paragraph arises because we assume that q and P are of 
order unity. Let usinspect (4.6) and (4.7) a little more closely. If we put E = 7 = K = 0 
in (4.6) we obtain equation (3.4), the dispersion relation for adiabatic modes. If we put 
E = 7 = 0, K = co in (4.7) we obtain equation (3.14), the dispersion relation for iso- 
thermal modes. Thus, when IwI $ 1718~1 and diffusion is weak, we expect (4.6) to be 
close, in some sense, to the adiabatic solution and (4.7) to be close to the isothermal one. 
A little thought reveals that the only sense in which (4.6) can be close to the adiabatic 
solution is that I K ’ s ~ ~  < IwI (cf. (3.20)-the thermal relaxation time is very long com- 
pared to a period of oscillation); the only sense in which (4.7) can be close to the 
isothermal solution (3.14) is that IwI < I K ’ s ~ ~  (the thermal relaxation time is very short 
compared to a period of oscillation). It is now clear that, when IwI 9 17s21, we require 
for consistency that 

(4.12) 

Thus the possibility that q might be greater than unity in (4.11) never arises. These 
observations do not mean that Busse’s (1976) conclusion, that the direction of pro- 
pagation of an instability depends upon the magnitudes of the diffusivities 7 and K 

involved, is wrong. His result lies outside the scope of our eastward propagation 
theorem (which is for a compressible fluid and assumes that N 2  cannot be more than 
very marginally negative). The observations do, however, indicate that Busse’s method 
cannot be extended to the present theory and is therefore of restricted validity. 

Before proceeding, in the next section, to derive criteria for weakly diffusive 
instability, we define the isothermal and adiabatic scale heights 

Lo = a;/g, L, 5 a;/g 

and the ‘aspect length’ 
H = D - .  dY 

dz, 

(4.13) 

(4.14) 
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FI~TJRE 1. A cross-section of the geometrical configuration used in this paper; the x axis points out 
of the page. This shows that the aspect length H defined by (4.14) is the distance from the 
centre of the top to the point where its projection meets the projection of the (greatly exaggerated 
here) sloping bottom EF. 0 is the origin and the co-ordinates of the points P, Q, S, R in the 
y, z plane are, respectively, ( f 3 0 ,  D) and ( 4 0 ,  0); while the points E ,  F in which z = zz(y) 
meets the side walls are given by f (@, h) .  

The physical meaning of the aspect length is depicted by figure 1. Using (4.13) and 
(4.14) we define the instability parameter 

(4.15) 

Thus a is the ratio of the isothermal to the adiabatic Rossby frequency and (since 
y > 1 )  can be varied as follows to give any value except unity, as indicated in figure 1 : 

The value a = 1 would correspond to an incompressible fluid, for which the instabilities 
described in the following section cannot take place. 

As we shall see, these instabilities are driven by the thermal diffusivity K', they 
cannot take place if K' = 0 : for v = 7 = 0, this has been shown in 5 3; for v 4= 0, 7 + 0 
it can be verified by putting K' = 0 in (4.5) and noting that this implies uIm < 0. 

5. Weak thermal diffusion: almost adiabatic modes 
Let us assume that 

- O(4 
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and write the dispersion relation (2.61) in the form 

(5.2) 

Here, e Q 1 is a small parameter in terms of which we shall expand the frequency w :  

(5.3) 

where lwl/wol = O(E) .  Let us now substitute (5.3) into (5.2) and keep all non-diffusive 
terms at order unity. At zeroth order in e we obtain (3.4), which is conveniently 
rewritten in the form 

w = 0, + 0 1  + 0 ( € 2 ) ,  

for convenience, we repeat the definition (3.10) 

J, = / 3 ~ ~ (  V2k2 + N2k2s-2). (5.5) 

At first order in e we obtain, on using (5.4): 

Since, by (5.4), o,/B* + 1 has the same sign as @,/I*, the sign of -iwl is determined 
by the right-hand side of (5.6); using (5.4) again, the condition that the adiabatic waves 
(3.4) should amplify is therefore 

w N2k2 V2k2 
(l-a)-!? > - + q 7 + P  

P* P:s2 P* (5.7) 

The quantities K' ,  q and P are defined by (4.2) and (4.8). Let us now define the 
quantities # : 

The solutions (3.11) of the adiabatic dispersion relation (3.4) (or (5.4)) can then be 
written 

#+,.- = (1 + 4~,)* ~t 1. (5.8) 

(2)+,- = T *#+,- Y (5.9) 

where, recalling our chosen terminology, the plus (minus) sign in (5.8) and (5.9) 
corresponds to the fast (slow) wave solution of the pair. Condition (5.7) for instability 
can now be written 

N2k2 V2k2 

(5.10) 

Since #+,- > 0, the effect of viscosity is always stabilizing. (This remains true, of 
course, for the compressible analogue of Busse's model with interior viscosity and 
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steep depth gradient (cf. appendix - then P is replaced by the Prandtl number v /K' . )  
To simplify presentation, therefore, we will henceforward set 

v = 0, (6.11) 

and bear in mind that the growth rates calculated by (5.14) and (5.15) below would in 
practice be somewhat reduced by viscosity. 

The growth rate, - i q ,  is now just K ' S ~  times the difference between the left- and 
right-hand sides of (5.10), with P set equal to zero. Let us denote the growth rates of 
the fast and slow waves, non-dimensionalized with respect to K'/D2, by 

Also, let us set 
s2 = k2+m2 = r2n2/D2, r > 1; 

(5.12) 

(8.13) 

r > 1 because n / D  is the minimum value of m allowed by the boundary conditions 
(2.18) and k 4 0 is assumed at  (5.1). Then the growth rates n,, n ,  are given by 

n,  = 4r2n2[a - 1 - $a$-] (6.14) 

and n- = +r2n2[l-a-&a$+], (5.15) 

where (6.16) 

We see that the fast wave can amplify only if a =- 1, while the slow wave can amplify 
only if a < 1. Comparing (5.9) with the results of $ 4  we see that this is just a mani- 
festation of the fact that all amplifying waves must propagate eastward. 

Once the parameters 

(6.17) 

have been fixed, n is a function only of r2 and can, in principle, be maximized by the 
use of ordinary differentiation with respect to r2. However, this would involve the 
solution of an equation which is quintic in r2; this cannot be performed algebraically. 
Thus, in the remainder of this section, we content ourselves with a numerical evalua- 
tion of n, and n- for 

- 0.1, - =- v2 - - 10-6 D 
L,- R2 RaD2 

= 1.67, (6.18) 

and various values of q ;  the results are drawn in figures 2 (a), (b) and (c)  respectively for 
a = 0.1, a = - 1.67 and a = 1.67. In  each graph, the value of 0- in  (0.ln- in the first 
two cases and Oqln, in the last) is plotted against values of r from r = 1 to r = 6. The r 
scale is the same in each diagram but 0. In is plotted for values from zero to 0. 1E and the 
appropriate value of T i  is given in the figure caption. The three cases considered in 
figure 2 have been chosen to illustrate the three caaes defined by (4.16), as follows. 

(a) H < Lo or 0 < a c 1. Only the slow wave can be amplified. From (5.15) it is clear 
that there can be no instability if either q 2 1 or V =+ 0. Thus, although the instability 
is driven by thermal diffusion, the energy available for instability cannot be released 
without the help of the magnetic field. 
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FIOVRE 2. Graphs of the growth rate 0-ln for three values of the instability parameter a and for 
various values of the ratio q of the magnetic to the reduced thermal dsusivity, plotted against 
the wavenumber T ;  n+, - and r are defined by (5.13)-(5.15). A positive (negative) sign denotes a 
fast (slow) wave. In each case, the mapping rectangle is (1 d r d 6, 0 d O.ln+, - d 0*1A}, where 
A is given, and the graph for the lowest value of q is uppermost, with graphs for lower values of 
q nested in sequence below it. (a) a = 0.1, p = 0-1, 0-15, 0.2, 0.25, 0.3, 0.35. ( b )  a = - 1.67, 
q = 0.1, 0.2, 0.3, 0.5, 0.7, 0.9. (c) u = 1.67, p = 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0. 

When q = 0, (5.15) predicts that the most rapidly growing mode has zero wave- 
length; thus some magnetic diffusion is needed to ensure that the critical wavenumber 
for maximum growth rate is finite. It is clear from figure 2(a) that, as q is increased 
from zero, this critical wavelength is increased from zero ( r  decreasing) but the 
corresponding maximum growth rate is a t  the same time reduced; and when 7 is 
eo large that q 2 + the instability has been suppressed completely by magnetic 
diffusion. 

( b )  Lo Q H < L, or -a < a 6 0. Only the slow wave can be amplified. Instability 
can take place if V = 0 but some diffusion other than thermal diffusion (which is the 
destabilizing agent) is again needed to keep the critical wavenumber for maximum 
growth rate finite. In  figure 2 (b )  V =k 0 because 7 plays this role; however, since magnetic 
diffusion could be replaced by viscosity, the magnetic field is not essential for instability 
when a is negative. 

Both the slow wave (a < 1) instabilities we have just considered depend crucially 
upon the depth gradient since a = y > 1 when dz,/dy = 0. 

(c) H > L, or 1 < a < co. Only the fast wave can be amplified; apart from this, the 
only difference between the case a > 1 and the case a < 0 is that the depth gradient is 
not needed for the amplification of the fast wave. To illustrate this point in figure 2 (c) 
we have chosen the value a = y = 1-67 corresponding to dz,/dy = 0. 

We emphasize, once again, that all three instabilities depend crucially upon com- 
pressibility: (5.10) could not be satisfied by taking a = 1, which corresponds to an 
incompressible (Boussinesq) fluid. Thus the energy available for instability is attribut- 
able at least partly (and in cases (b)  and (c )  wholly) to the work done by compression 
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of the fluid. Finally, we note that the third root of the cubic (5.2) is given to leading 
order by 

(6.19) 

and thus always corresponds to decay. 

6. Conclusion 
We have studied linear wave motions in a rotating, compressible fluid which is 

capable of releasing elastic potential energy through instability. We have shown ( 0  3) 
that compressibility allows a neutral Rossby wave to propagate even in the absence of 
a depth gradient; this cannot happen in a Boussinesq fluid. The Rossby waves may be 
amplified ( 3  5) by a small amount of thermal diffusivity and all such instabilities must 
propagate eastward, independently of both the sign of the depth gradient and the 
magnitudes of all diffusivities involved. 

The nature of the instabilities depends on whether the aspect length (see figure 1)  is 
less than an isothermal scale height, greater than an adiabatic scale height or of 
intermediate size (H < Lo, H > L,  or Lo < H < L*). When H < Lo, a condition which 
automatically requires the depth gradient to be non-zero and positive, the effects of 
‘curvature’ (see the third paragraph of $1) dominate over those of gravity and a 
magnetic field is needed to facilitate the release of elastic energy (0  5). There is thus a 
good analogy with the magnetic field gradient instability, discussed by Acheson & 
Gibbons (1978), which occurs inside a certain critical radius in a cylindrical annulus 
of rotating, compressible fluid: this region is the one in which curvature effects 
dominate gravitational effects and these authors find that elastic potential energy can 
be released by a magnetic field which is perpendicular to both gravity and the rotation 
vector. 

When H > Lo and ‘curvature’ effects are dominated by gravity, a more direct 
release of elastic energy is possible ( Q  5). A magnetic field ensures a finite maximum 
growth rate; but since viscosity could also do this, the magnetic field is not essential for 
instability. From an astrophysical point of view, this is certainly the most important 
case: whatever else may be necessary to apply our theory to the solar convection zone, 
where density varies rapidly with height, it is certain that we require H > L,. Thus 
with reference to the question posed in the second paragraph of Q 1, the present analysis 
effectively rules out (cf. Acheson 1979a) the possible importance of quasi-geostrophic 
magnetic instabilities in solar dynamics. 

I am very grateful to Drs D. J. Acheson and R. Hide for valuable comments on a 
first draft of this paper. I am also grateful to the Science Research Council for financial 
support. 

Appendix. On the effect of viscosity 
We have neglected viscous stresses in the interior of the fluid on the grounds that the 

wavelength of a disturbance is not too small, thus obviating the need to satisfy the 
condition that uo should vanish at the side-walls (which it will not do according to 
(2.60)). It is very simple to determine, however, what would happen if we ignored this 
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boundary condition and, instead of Ekman suction, introduced a viscous stress at the 
same order as the Lorentz force in the momentum equation (2.19). Because of the local 
approximation, this stress would reduce (cf. Gibbons 1977; Acheson 1978a) to its 
incompressible counterpart - VV A (V A u) and produce the following dispersion 
relation instead of (2.61): 

The only difference is that 252Et is replaced by vs8 in the fourth term of the left-hasd 
side. Hence it is legitimate to neglect viscous stresses in the interior of the fluid 
provided only 

RE* 9 v.@ or A 9 O(EiD), (A 2)  

where A is the disturbance wavelength and E 4 1 (cf. Busse 1970). 
It is reasonable to ask, however, what happens if the length scale in the y direction, 

Y say, is very much smaller than D. Then the relevant Ekman number, E,, is baaed 
on the length scale Y, not D; and if A, is a disturbance wavelength in they direction, 
viscosity in the interior of the fluid can be ignored only if 

A, B= O(& Y ) .  (A 3) 

For E Q E ,  4 1, Ek may well be close to unity, so that (A 3) will not be satisfied and 
viscosity will be more important in the interior of the fluid than in Ekman boundary 
layers (though properly, of course, we should include both). As recognized by Busse 
(1970), this ( Y 4 D) situationis physicallyrelevant because it allows the depthgradient 
to be of order unity, as it would be in a spherical shell, without destroying the two- 
dimensionality of the system. To see this, we have only to rescale the linearized 
equations: y is non-dimensionalized by Y ( 4  D) instead of D. To ensure that w,, atill 
vanishes we must insist that E ,  4 1 as well; b, and v must be rescaled (reduced) by a 
factor HD-1 to preserve Gauss's law and the continuity equation while t must be 
rescaled (lengthened) by a factor DH-1 to preserve geostrophic balance. Once all this 
has been done, the entire analysis of Q 2 can be repeated and produces (A 1) if only go 

is replaced, wherever it appears in (Al) ,  by ma, to take account of the fact that 
Ikl Q Iml. Thus the two systems (gentle bottom slope and Ekman suction, order unity 
bottom slope and interior viscosity) are to a very large degree equivalent, at least under 
the local approximation, because we can switch from the first to the second just by 
replacing 2 0 E t  and s2 by vma and m2 respectively. We therefore expect that the 
results we have derived using the first system will be typical of the second system also 
(cf. Acheson 1978b). 

REFERENCES 

ACHESON, D. J. 1978a Phil. Tram. Roy. SOC. A 209, 459-496. 
ACHESON, D. J .  1978b In Rotating Fluida in Geophysics (ed. P. H. Roberts & A. M. Soward), 

Academia. 
ACHESON, D. J. 1979a Solar Phyaice 62,23450. 
ACEESON, D. J. 1979b Submitted to Proc. Roy. SOC. A. 
AQEESON, D. J. & GIBBONS, M. P. 1978 J .  FJuid Mech. 85, 743-757. 



Diffusive instabilities of a rotating, conducting JEuid layer 513 

ACEESON, D. J. & HIDE, R. 1973 Rep. Prog. Phys. 36, 159-221. 
BUSSE, F. H. 1970 J .  Fluid Mech. 44, 441-460. 
BUSSE, F. H. 1976 Phys. of the Earth and Planetary Interiors 12, 350-358. 
FRICKE, K. 1969 Astron. Astrophys. 1, 388-398. 
GIBBONS, M. P. 1975 M.Sc. thesis, University of Oxford. 
GIBBONS, M. P. 1977 D.Phi1. thesis, University of Oxford. 
GOLDREICH, P. & SCHUBERT, G. 1967 Astrophys. J .  150, 571-587. 
GREENSPAN, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press. 
HIDE, R. 1966 Phil. Trans. Rq. SOC. A 259, 615-647. 
HIDE, R. 1977 Quart. J .  Roy. Met. SOC. 103, 1-28. 
HOLTON, J. R. 1972 A n  Introduction to Dywmic Meteorology. Academic. 
MOFFATT, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge 

PARKER, E. N. 1955 Aetrophys. J .  121, 491 -507. 
PARKER, E. N. 1977 Ann. Rev. Astron. Astrophys. 15, 45-68. 
PEDLOSKY, J. 1971 Lect. Appl. Math. 13, 1-60. 
ROBERTS, P. H. 1967 A n  Introduction to Magnetohydrodynamic8. V.K. : Longman Green. 
ROBERTS, P. H. & STEWARTSON, K. 1977 Astron. Nachr. 298, 311-318. 

University Press. 

F L M  96 


